Problem 1.52

For Theorem 2, show that $(\mathrm{d}) \Rightarrow(\mathrm{a}),(\mathrm{a}) \Rightarrow(\mathrm{c}),(\mathrm{c}) \Rightarrow(\mathrm{b}),(\mathrm{b}) \Rightarrow(\mathrm{c})$, and $(\mathrm{c}) \Rightarrow(\mathrm{a})$.

Solution

Theorem 2 says that the following conditions are equivalent.
(a) $\nabla \cdot \mathbf{F}=0$ everywhere.
(b) $\iint \mathbf{F} \cdot d \mathbf{S}$ is independent of surface for any given boundary line.
(c) $\oiint \mathbf{F} \cdot d \mathbf{S}=0$ for any closed surface.
(d) \mathbf{F} is the curl of some vector function: $\mathbf{F}=\nabla \times \mathbf{A}$.
$(\mathrm{d}) \Rightarrow(\mathrm{a})$
Assume that \mathbf{F} is the curl of some vector function: $\mathbf{F}=\nabla \times \mathbf{A}$. Show that $\nabla \cdot \mathbf{F}=0$.

$$
\begin{aligned}
\nabla \cdot(\nabla \times \mathbf{A}) & =\left(\sum_{i=1}^{3} \boldsymbol{\delta}_{i} \frac{\partial}{\partial x_{i}}\right) \cdot\left[\left(\sum_{j=1}^{3} \boldsymbol{\delta}_{j} \frac{\partial}{\partial x_{j}}\right) \times\left(\sum_{k=1}^{3} \boldsymbol{\delta}_{k} A_{k}\right)\right] \\
& =\left(\sum_{i=1}^{3} \boldsymbol{\delta}_{i} \frac{\partial}{\partial x_{i}}\right) \cdot\left[\sum_{j=1}^{3} \sum_{k=1}^{3}\left(\boldsymbol{\delta}_{j} \times \boldsymbol{\delta}_{k}\right) \frac{\partial A_{k}}{\partial x_{j}}\right] \\
& =\left(\sum_{i=1}^{3} \boldsymbol{\delta}_{i} \frac{\partial}{\partial x_{i}}\right) \cdot\left(\sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3} \boldsymbol{\delta}_{l} \varepsilon_{j k l} \frac{\partial A_{k}}{\partial x_{j}}\right) \\
& =\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3}\left(\boldsymbol{\delta}_{i} \cdot \boldsymbol{\delta}_{l}\right) \varepsilon_{j k l} \frac{\partial}{\partial x_{i}} \frac{\partial A_{k}}{\partial x_{j}} \\
& =\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3} \delta_{i l} \varepsilon_{j k l} \frac{\partial}{\partial x_{i}} \frac{\partial A_{k}}{\partial x_{j}} \\
& =\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{j k i} \frac{\partial}{\partial x_{i}} \frac{\partial A_{k}}{\partial x_{j}} \\
& =\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{i j k} \frac{\partial^{2} A_{k}}{\partial x_{i} \partial x_{j}} \\
& \left.=\sum_{j=1}^{3} \sum_{i=1}^{3} \sum_{k=1}^{3} \varepsilon_{j i k} \frac{\partial^{2} A_{k}}{\partial x_{j} \partial x_{i}} \quad \text { (let } i \text { be } j \text { and let } j \text { be } i .\right) \\
& =\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{j i k} \frac{\partial^{2} A_{k}}{\partial x_{j} \partial x_{i}} \quad \text { (limits are constant, so interchange sums) } \\
& =\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{j i k} \frac{\partial^{2} A_{k}}{\partial x_{i} \partial x_{j}}=\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3}\left(-\varepsilon_{i j k} \frac{\partial^{2} A_{k}}{\partial x_{i} \partial x_{j}}=-\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{i j k} \frac{\partial^{2} A_{k}}{\partial x_{i} \partial x_{j}}=0\right.
\end{aligned}
$$

$(\mathrm{a}) \Rightarrow(\mathrm{c})$
Assume that $\nabla \cdot \mathbf{F}=0$ everywhere and show that $\oiint \mathbf{F} \cdot d \mathbf{S}=0$ for any closed surface.

$$
\nabla \cdot \mathbf{F}=0
$$

Integrate both sides over any volume D with surface, bdy D.

$$
\iiint_{D}(\nabla \cdot \mathbf{F}) d V=\iiint_{D}(0) d V
$$

Use Gauss's theorem on the left and evaluate the integral on the right.

$$
\oiint_{\text {bdy } D} \mathbf{F} \cdot d \mathbf{S}=0
$$

$(\mathrm{c}) \Rightarrow(\mathrm{b})$
Assume that

$$
\oiint_{\text {bdy } D} \mathbf{F} \cdot d \mathbf{S}=0
$$

for any closed surface, bdy D. Use Gauss's theorem to turn this surface integral into a volume integral over the enclosed volume D.

$$
\iiint_{D} \nabla \cdot \mathbf{F} d V=0
$$

Since this holds for any volume, $\nabla \cdot \mathbf{F}=0$ everywhere. And that means there exists a vector potential function \mathbf{A} such that $\mathbf{F}=\nabla \times \mathbf{A}$. Consider the integral of \mathbf{F} over an arbitrary open surface S with boundary line, bdy S, and use Stokes's theorem.

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S}(\nabla \times \mathbf{A}) \cdot d \mathbf{S}=\oint_{\text {bdy } S} \mathbf{A} \cdot d \mathbf{l}
$$

Regardless of what S is, the surface integral is always equal to a line integral over the boundary.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$
Assume that

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}
$$

is independent of surface S for any given boundary line, bdy S. This implies that \mathbf{F} is the curl of a vector potential function: $\mathbf{F}=\nabla \times \mathbf{A}$. By Stokes's theorem, then,

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S}(\nabla \times \mathbf{A}) \cdot d \mathbf{S}=\oint_{\text {bdy } S} \mathbf{A} \cdot d \mathbf{l},
$$

but this is not important. What is important is the closed surface integral of \mathbf{F}.

$$
\oiint_{S} \mathbf{F} \cdot d \mathbf{S}=\oiint_{S}(\nabla \times \mathbf{A}) \cdot d \mathbf{S}=\oint_{\mathrm{bdy} S} \mathbf{A} \cdot d \mathbf{l}=\int_{\mathbf{a}}^{\mathbf{a}} \mathbf{A} \cdot d \mathbf{l}=0
$$

It's zero because the boundary line of a closed surface is a single point.

$(\mathrm{c}) \Rightarrow(\mathrm{a})$

Assume that

$$
\oiint_{\text {bdy }} \mathbf{F} \cdot d \mathbf{S}=0
$$

for any closed surface, bdy D. Apply Gauss's theorem to turn this surface integral into a volume integral.

$$
\iiint_{D}(\nabla \cdot \mathbf{F}) d V=0
$$

Since this is true for any volume $D, \nabla \cdot \mathbf{F}=0$ everywhere.

